论文标题

Kerr-Newman-ads黑洞和超凝结黑洞空位中的无效曲面空位

Null Hypersurfaces in Kerr-Newman-AdS Black Hole and Super-Entropic Black Hole Spacetimes

论文作者

Imseis, Michael T. N., Balushi, Abdulrahim Al, Mann, Robert B.

论文摘要

时空几何形状的三维光明叶状是研究其光锥结构并在数值相对性中具有重要应用的一种特殊方法。在本文中,我们为Kerr-Newman-Ads黑洞几何形状执行了这样的叶子,并将其与Kerr-Ads和Kerr-Newman Black Boles的轻便叶子进行了比较。我们得出了控制这种切片并研究其特性的方程式。特别是,我们发现这些无效的超曲面在Kerr-Newman-Ads Black Hole的内部地平线内发展,与Kerr-Ads情况形成鲜明对比。然后,我们采取了Kerr-Newman-Ads时​​空的超旋转极限,导致了所谓的超渗透性黑洞,并表明无效的Hypersurfaces在此黑洞的事件地平线以外的有限距离内形成了苛刻距离。作为应用程序,我们为Kerr-Newman-Ads Black Hole及其超旋转对应物构建Kruskal坐标。

A three-dimensional light-like foliation of a spacetime geometry is one particular way of studying its light cone structure and has important applications in numerical relativity. In this paper, we execute such a foliation for the Kerr-Newman-AdS black hole geometry and compare it with the lightlike foliations of the Kerr-AdS and Kerr-Newman black holes. We derive the equations that govern this slicing and study their properties. In particular, we find that these null hypersurfaces develop caustics inside the inner horizon of the Kerr-Newman-AdS black hole, in strong contrast to the Kerr-AdS case. We then take the ultra-spinning limit of the Kerr-Newman-AdS spacetime, leading to what is known as a Super-Entropic black hole, and show that the null hypersurfaces develop caustics at a finite distance outside the event horizon of this black hole. As an application, we construct Kruskal coordinates for both the Kerr-Newman-AdS black hole and its ultra-spinning counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源