论文标题
扩展不变性的路径(积分)
A Path (Integral) to Scale Invariance
论文作者
论文摘要
我们为规模不变量子场理论提出了一个路径积分公式。我们通过修改功能集成度量的方式来做到这一点,以使分区函数始终是完全规模不变的,而成本是在积分下具有额外的决定因素。在扰动理论中,这种额外的决定因素再现了规模正则化的自下而上的过程,从而提供了逐阶取消量表异常的订购,并提供了新的不符合性的不利性顶点。但是,我们在这里的表述超越了扰动理论,它也适合研究非扰动效应。它允许从任何经典的不变动作中提出规模不变的量子理论。
We propose a path integral formulation for scale invariant quantum field theories. We do it by modifying the functional integration measure in such a way that the partition function is always exactly scale invariant, at the cost of having an extra determinant under the integral. In perturbation theory, this extra determinant reproduces the bottom-up procedure of scale invariant regularization, providing an order-by-order cancellation of the scale anomaly together with new non-renormalizable vertices. Our formulation here, however, goes beyond perturbation theory and it is also suitable to study non-perturbative effects. It allows to formulate a scale invariant quantum theory out of any classically invariant action.