论文标题
金属中的热机械转换:泰勒 - Quinney系数的脱位可塑性模型评估
Thermomechanical conversion in metals: dislocation plasticity model evaluation of the Taylor-Quinney coefficient
论文作者
论文摘要
使用分隔的能量热力学框架,该框架将能量分配给原子构型储存的冷工作和动力学振动的能量,我们对Taylor-Quinney系数产生了重要的约束,量化了塑料工程在塑性变形过程中被转化为热量的塑料工程的分数。与两个能量贡献相关的是两个独立的温度 - 热能的普通温度和构型能的有效温度。我们表明,泰勒 - Quinney系数是热力学定义的有效温度的函数,可测量材料中原子构型疾病。使用热力学脱位理论(TDT)对铝合金6016-T4 \ citep {neto_2020}进行最近发表的实验的有限元分析,显示了理论和实验在压力 - 构造行为和温度的时间演化之间的良好一致性。模拟包括实验过程中的导电和对流热能损失,并且在模拟结果中存在明显的热梯度。还提出了差异泰勒 - Quinney系数的计算值,并提出了一个值在材料和增加应变时增加的值。
Using a partitioned-energy thermodynamic framework which assigns energy to that of atomic configurational stored energy of cold work and kinetic-vibrational, we derive an important constraint on the Taylor-Quinney coefficient, which quantifies the fraction of plastic work that is converted into heat during plastic deformation. Associated with the two energy contributions are two separate temperatures -- the ordinary temperature for the thermal energy and the effective temperature for the configurational energy. We show that the Taylor-Quinney coefficient is a function of the thermodynamically defined effective temperature that measures the atomic configurational disorder in the material. Finite-element analysis of recently published experiments on the aluminum alloy 6016-T4 \citep{neto_2020}, using the thermodynamic dislocation theory (TDT), shows good agreement between theory and experiment for both stress-strain behavior and temporal evolution of the temperature. The simulations include both conductive and convective thermal energy loss during the experiments, and significant thermal gradients exist within the simulation results. Computed values of the differential Taylor-Quinney coefficient are also presented and suggest a value which differs between materials and increases with increasing strain.