论文标题

辅助目标域分类器的域适应性

Domain Adaptation with Auxiliary Target Domain-Oriented Classifier

论文作者

Liang, Jian, Hu, Dapeng, Feng, Jiashi

论文摘要

域适应性(DA)旨在将知识从富含标签但异质域的知识转移到标签 - 标准域,从而减轻了标签工作并引起了相当大的关注。与以前关注学习域不变特征表示的方法不同,一些最新方法呈现通用的半监督学习(SSL)技术,并将其直接应用于DA任务,甚至可以实现竞争性能。最受欢迎的SSL技术之一是伪标记,该标签通过通过标记数据训练的分类器为每个未标记的数据分配伪标签。但是,它忽略了DA问题的分布变化,不可避免地会偏向源数据。为了解决此问题,我们提出了一个新的伪标记框架,称为辅助目标域的分类器(ATDOC)。 ATDOC通过引入仅用于目标数据的辅助分类器来减轻分类器偏差,以提高伪标签的质量。具体而言,我们采用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而无需引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻里聚合的ATDOC显着超过了域的对准技术和先前的SSL技术,这些技术在各种DA基准上,甚至是恐吓标记的SSL任务。

Domain adaptation (DA) aims to transfer knowledge from a label-rich but heterogeneous domain to a label-scare domain, which alleviates the labeling efforts and attracts considerable attention. Different from previous methods focusing on learning domain-invariant feature representations, some recent methods present generic semi-supervised learning (SSL) techniques and directly apply them to DA tasks, even achieving competitive performance. One of the most popular SSL techniques is pseudo-labeling that assigns pseudo labels for each unlabeled data via the classifier trained by labeled data. However, it ignores the distribution shift in DA problems and is inevitably biased to source data. To address this issue, we propose a new pseudo-labeling framework called Auxiliary Target Domain-Oriented Classifier (ATDOC). ATDOC alleviates the classifier bias by introducing an auxiliary classifier for target data only, to improve the quality of pseudo labels. Specifically, we employ the memory mechanism and develop two types of non-parametric classifiers, i.e. the nearest centroid classifier and neighborhood aggregation, without introducing any additional network parameters. Despite its simplicity in a pseudo classification objective, ATDOC with neighborhood aggregation significantly outperforms domain alignment techniques and prior SSL techniques on a large variety of DA benchmarks and even scare-labeled SSL tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源