论文标题

Lipschitz几何介绍的复杂奇异性

An introduction to Lipschitz geometry of complex singularities

论文作者

Pichon, Anne

论文摘要

本文的目的是向读者介绍有关复杂奇点的Lipschitz分类的最新观点。它提出了复杂平面曲线奇异性的Lipschitz几何形状的完整分类,尤其是引入了所谓的气泡技巧和泡泡窍门,跳高是研究细菌的Lipschitz几何形状的关键工具。它还描述了正常复合物表面奇异性的厚实分解,并将正常表面胚芽的两个几何分解构建为标准碎片,这些碎片分别由内部和外部比利普斯基茨同构形态形态不变。这尤其导致了内部度量的Lipschitz几何形状的完整分类。

The aim of this paper to introduce the reader to a recent point of view on the Lipschitz classifications of complex singularities. It presents the complete classification of Lipschitz geometry of complex plane curves singularities and in particular, it introduces the so-called bubble trick and bubble trick with jumps which are key tools to study Lipschitz geometry of germs. It describes also the thick-thin decomposition of a normal complex surface singularity and built two geometric decompositions of a normal surface germ into standard pieces which are invariant by respectively inner and outer bilipschitz homeomorphisms. This leads in particular to the complete classification of Lipschitz geometry for the inner metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源