论文标题
无机晶体系统的结构中心学习框架
Structure motif centric learning framework for inorganic crystalline systems
论文作者
论文摘要
在基于网络的机器学习(ML)体系结构中纳入物理原理是迈向材料科学和冷凝物质物理学的人工智能持续发展的基本步骤。在这项工作中,受Pauling规则的启发,我们建议在无机晶体中的结构图案(由阳离子和周围阴离子形成的多面体形成)可以作为机器学习框架的中心输入,用于晶体学习框架。以金属氧化物为例,我们证明了一种无监督的学习算法基序2VEC能够在大量的结晶化合物中转换结构图案的存在及其连接为唯一的矢量表示。复杂材料之间的连接可以在很大程度上取决于存在不同结构基序的存在,并且它们的聚类信息由我们的基序2VEC算法确定。为了证明结构图案信息的新颖使用,我们表明,可以通过将基序信息与最近开发的基于原子的图神经网络相结合以形成Atom-MoTIF双图网络(AMDNET)来有效地创建一个以基序学习框架。利用原子和基序水平上的节点和边缘信息,AMDNET比原子图网络更准确,在预测电子结构相关的金属氧化物(例如带隙)的材料特性方面,AMDNET比原子图网络更准确。这项工作说明了图形神经网络学习体系结构的基本设计的途径,该体系结构通过纳入超出原子的物理原理。
Incorporation of physical principles in a network-based machine learning (ML) architecture is a fundamental step toward the continued development of artificial intelligence for materials science and condensed matter physics. In this work, as inspired by the Pauling rule, we propose that structure motifs (polyhedral formed by cations and surrounding anions) in inorganic crystals can serve as a central input to a machine learning framework for crystalline inorganic materials. Taking metal oxides as examples, we demonstrated that, an unsupervised learning algorithm Motif2Vec is able to convert the presence of structure motifs and their connections in a large set of crystalline compounds into unique vector representations. The connections among complex materials can be largely determined by the presence of different structure motifs and their clustering information are identified by our Motif2Vec algorithm. To demonstrate the novel use of structure motif information, we show that a motif-centric learning framework can be effectively created by combining motif information with the recently developed atom-based graph neural networks to form an atom-motif dual graph network (AMDNet). Taking advantage of node and edge information on both atomic and motif level, the AMDNet is more accurate than an atom graph network in predicting electronic structure related material properties of metal oxides such as band gaps. The work illustrates the route toward fundamental design of graph neural network learning architecture for complex material properties by incorporating beyond-atom physical principles.