论文标题

COVID-19爆发中的熵的动态

The dynamics of entropy in the COVID-19 outbreaks

论文作者

Wang, Ziqi, Broccardo, Marco, Mignan, Arnaud, Sornette, Didier

论文摘要

随着19009大流行的展开,流行病的数学建模已被视为并用作理解,预测和管理大流行事件的核心元素。但是,很快,很明显,长期的预测非常具有挑战性。而且,目前尚不清楚哪些度量应用于全球爆发演变的全球描述。然而,对大流行动力学的强大建模以及对传输度量的一致选择对于对宏观现象学和更明智的缓解策略的深入了解至关重要。在这项研究中,我们提出了一个马尔可夫随机框架,旨在描述Covid-19-19大流行期间熵的演变和瞬时生殖比率。然后,我们介绍和使用基于熵的全球传播指标来衡量大流行事件的影响和时间演变。在模型的表述中,爆发的时间演变是由非线性马尔可夫过程的主方程来建模的,用于统计平均个体,从而导致明确的物理解释。我们还提供了完整的贝叶斯反转方案进行校准。熵率的时间演变,系统熵的绝对变化以及瞬时生殖比是该框架的自然和透明输出。该框架具有适用于任何隔间流行模型的吸引力。作为例证,我们将提出的方法应用于对易感感染的回热(SEIR)模型的简单修改。将模型应用于韩国,意大利语,西班牙语,德语和法国库维德19个数据集,我们发现熵的绝对变化存在显着差异,但熵进化和瞬时生殖比的趋势高度规律。

With the unfolding of the COVID-19 pandemic, mathematical modeling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long term predictions were extremely challenging to address. Moreover, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modeling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed to describe the evolution of entropy during the COVID-19 pandemic and the instantaneous reproductive ratio. We then introduce and use entropy-based metrics of global transmission to measure the impact and temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modeled by the master equation of a nonlinear Markov process for a statistically averaged individual, leading to a clear physical interpretation. We also provide a full Bayesian inversion scheme for calibration. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the Susceptible-Exposed-Infected-Removed (SEIR) model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 data-sets, we discover a significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源