论文标题

1D稀释模型的局部分布

Local distributions of the 1D dilute Ising model

论文作者

Panov, Yu. D.

论文摘要

研究了带有充电杂质的一维稀释的伊辛模型的局部分布。获得对成对分布函数和相关长度的明确表达式,并根据杂质的浓度探索其低温渐近行为。为了更详细地考虑订购过程,我们研究本地分布。基于稀释链链的Markov特性,我们获得了任何有限序列概率的明确表达式,并找到了由重复块组成的序列长度的几何概率分布。对分布的分析表明,自旋相关长度的临界行为是由铁磁或抗铁磁序列定义的,而杂质相关长度的临界行为由杂质序列或电荷订购序列定义。对于稀释链链,没有其他重复序列的平均长度在零温度下差异。虽然自旋相关性和杂质相关长度都只能在零温度下差异,但订购过程在有限温度下最大的特定热量导致由杂质旋转对浓度的最大变化速率定义的特定热量。在此温度下发现了一个简单的近似方程。我们表明,非排序稀释的伊斯丁链对应于常规的马尔可夫链,而各种订购产生了不同类型的不规则的马尔可夫链。

The local distributions of the one-dimensional dilute annealed Ising model with charged impurities are studied. Explicit expressions are obtained for the pair distribution functions and correlation lengths, and their low-temperature asymptotic behavior is explored depending on the concentration of impurities. For a more detailed consideration of the ordering processes, we study local distributions. Based on the Markov property of the dilute Ising chain, we obtain an explicit expression for the probability of any finite sequence and find a geometric probability distribution for the lengths of sequences consisting of repeating blocks. An analysis of distributions shows that the critical behavior of the spin correlation length is defined by ferromagnetic or antiferromagnetic sequences, while the critical behavior of the impurity correlation length is defined by the sequences of impurities or by the charge-ordered sequences. For the dilute Ising chain, there are no other repeating sequences whose mean length diverges at zero temperature. While both the spin correlation and the impurity correlation lengths can diverge only at zero temperature, the ordering processes result in a maximum of the specific heat at finite temperature defined by the maximum rate of change of the impurity-spin pairs concentration. A simple approximate equation is found for this temperature. We show that the non-ordered dilute Ising chains correspond to the regular Markov chains, while various orderings generate the irregular Markov chains of different types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源