论文标题

多项式身份,代数为3 $ \ times $ 3上三角矩阵的多项式身份

Polynomial identities with involution for the algebra of 3 $\times$ 3 upper triangular matrices

论文作者

Gonçalves, Dimas J., Silva, Dalton C.

论文摘要

令$ \ mathbb {f} $为特征$ p $的字段,让$ ut_n(\ mathbb {f})$为$ n $ n $ times n $上三角矩阵的代数,超过$ \ mathbb {f} $。在本文中,我们描述了:$ ut_n(\ mathbb {f})$的所有$*$ - 中央多项式的集合,当$ n \ geq 3 $和$ p \ neq 2 $时; $ ut_3(\ Mathbb {f})$的所有$*$ - 多项式身份的集合,当$ \ mathbb {f} $是无限的,$ p> 2 $。

Let $\mathbb{F}$ be a field of characteristic $p$, and let $UT_n(\mathbb{F})$ be the algebra of $n \times n$ upper triangular matrices over $\mathbb{F}$ with an involution of the first kind. In this paper we describe: the set of all $*$-central polynomials for $UT_n(\mathbb{F})$ when $n\geq 3$ and $p\neq 2$ ; the set of all $*$-polynomial identities for $UT_3(\mathbb{F})$ when $\mathbb{F}$ is infinite and $p>2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源