论文标题
物联网的机器学习和数据分析
Machine learning and data analytics for the IoT
论文作者
论文摘要
物联网(IoT)应用程序已增长,数量过高,生成了大量智能数据处理所需的数据。但是,不同的IoT基础架构(即云,边缘,雾)以及在传输/接收消息中的IoT应用程序层协议的局限性成为创建智能IoT应用程序的障碍。这些障碍阻止了当前的智能物联网应用程序,以适应其他物联网应用程序学习。在本文中,我们批判性地回顾了如何处理IoT生成的数据进行机器学习分析,并强调了当前在IoT环境中促进智能解决方案的挑战。此外,我们提出了一个框架,以使物联网应用程序适应性地从其他物联网应用程序中学习,并在如何将框架应用于文献中的真实研究中提出了一个案例研究。最后,我们讨论对物联网未来智能应用产生影响的关键因素。
The Internet of Things (IoT) applications have grown in exorbitant numbers, generating a large amount of data required for intelligent data processing. However, the varying IoT infrastructures (i.e., cloud, edge, fog) and the limitations of the IoT application layer protocols in transmitting/receiving messages become the barriers in creating intelligent IoT applications. These barriers prevent current intelligent IoT applications to adaptively learn from other IoT applications. In this paper, we critically review how IoT-generated data are processed for machine learning analysis and highlight the current challenges in furthering intelligent solutions in the IoT environment. Furthermore, we propose a framework to enable IoT applications to adaptively learn from other IoT applications and present a case study in how the framework can be applied to the real studies in the literature. Finally, we discuss the key factors that have an impact on future intelligent applications for the IoT.