论文标题
符合Q功能
Symplectic Q-functions
论文作者
论文摘要
Symplectic $ Q $ functions是Schur $ Q $ functions的符号类似物,定义为$ t = -1 $的hall-littlewood函数 - 与$ c $类型的根系相关。在本文中,我们证明了Symplectic $ Q $ functions共享Schur $ Q $ functions的许多属性,例如Tableau Description和Pieri-Type规则。我们提出了一些积极的猜想,包括对符号$ p $ dunctions的结构常数的积极猜想。最后,我们通过给出阶乘符号$ q $ functions的图表说明。
Symplectic $Q$-functions are a symplectic analogue of Schur $Q$-functions and defined as the $t=-1$ specialization of Hall--Littlewood functions associated with the root system of type $C$. In this paper we prove that symplectic $Q$-functions share many of the properties of Schur $Q$-functions, such as a tableau description and a Pieri-type rule. And we present some positivity conjectures, including the positivity conjecture of structure constants for symplectic $P$-functions. We conclude by giving a tableau description of factorial symplectic $Q$-functions.