论文标题
PAMIR:基于图像的人重建的参数模型条件的隐式表示
PaMIR: Parametric Model-Conditioned Implicit Representation for Image-based Human Reconstruction
论文作者
论文摘要
从单个图像中准确,稳健地对3D人类进行建模非常具有挑战性,而这种不良问题的关键是人类模型的3D表示。为了克服常规3D表示的局限性,我们提出了参数模型条件的隐式表示(PAMIR),将参数体模型与自由形式的深层隐式函数相结合。在我们的基于PAMIR的重建框架中,提出了一个新型的深神经网络,以使用参数模型的语义特征来规范自由形式的深层隐式函数,该功能在挑战性姿势和各种服装拓扑的情况下提高了概括能力。此外,新型的深度症状感知训练损失进一步整合以解决深度歧义,并能够通过不完美的身体参考来成功地进行表面细节重建。最后,我们提出了一种身体参考优化方法,以提高参数模型估计精度并增强参数模型与隐式函数之间的一致性。使用PAMIR表示,我们的框架可以很容易地扩展到多图像输入方案,而无需多摄像机校准和姿势同步。实验结果表明,在具有挑战性的姿势和服装类型的情况下,我们的方法可实现基于图像的3D人类重建的最新性能。
Modeling 3D humans accurately and robustly from a single image is very challenging, and the key for such an ill-posed problem is the 3D representation of the human models. To overcome the limitations of regular 3D representations, we propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function. In our PaMIR-based reconstruction framework, a novel deep neural network is proposed to regularize the free-form deep implicit function using the semantic features of the parametric model, which improves the generalization ability under the scenarios of challenging poses and various clothing topologies. Moreover, a novel depth-ambiguity-aware training loss is further integrated to resolve depth ambiguities and enable successful surface detail reconstruction with imperfect body reference. Finally, we propose a body reference optimization method to improve the parametric model estimation accuracy and to enhance the consistency between the parametric model and the implicit function. With the PaMIR representation, our framework can be easily extended to multi-image input scenarios without the need of multi-camera calibration and pose synchronization. Experimental results demonstrate that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.