论文标题

Rényi差异的变分表示和神经网络估计

Variational Representations and Neural Network Estimation of Rényi Divergences

论文作者

Birrell, Jeremiah, Dupuis, Paul, Katsoulakis, Markos A., Rey-Bellet, Luc, Wang, Jie

论文摘要

我们为RényiDiverences家族提供了一个新的变分公式,$r_α(q \ | p)$,概率指标$ q $和$ p $。我们的结果概括了Kullback-Leibler Divergence的经典Donsker-Varadhan变异公式。我们进一步表明,该rényi变化公式在一系列函数空间上都有。这导致了在非常弱的假设下的优化器公式,这也是我们开发RényiDivergence估计器一致性理论的关键。通过将该理论应用于神经网络估计器,我们表明,如果神经网络家族满足了通用近似属性的几个增强版本之一,那么相应的rényi散度估计器是一致的。与基于密度估计器的方法相反,我们的估计器仅涉及$ Q $和$ p $的期望,因此在高维系统中更有效。我们通过多达5000维系统中神经网络估计的几个数值示例来说明这一点。

We derive a new variational formula for the Rényi family of divergences, $R_α(Q\|P)$, between probability measures $Q$ and $P$. Our result generalizes the classical Donsker-Varadhan variational formula for the Kullback-Leibler divergence. We further show that this Rényi variational formula holds over a range of function spaces; this leads to a formula for the optimizer under very weak assumptions and is also key in our development of a consistency theory for Rényi divergence estimators. By applying this theory to neural-network estimators, we show that if a neural network family satisfies one of several strengthened versions of the universal approximation property then the corresponding Rényi divergence estimator is consistent. In contrast to density-estimator based methods, our estimators involve only expectations under $Q$ and $P$ and hence are more effective in high dimensional systems. We illustrate this via several numerical examples of neural network estimation in systems of up to 5000 dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源