论文标题

研究多个指示的试验统计设计注意事项

Statistical design considerations for trials that study multiple indications

论文作者

Kaizer, Alexander M., Koopmeiners, Joseph S., Chen, Nan, Hobbs, Brian P.

论文摘要

癌症生物学的突破已经定义了新的研究计划,强调了针对肿瘤细胞特定途径的疗法的发展。临床试验设计中的创新随后是由包容性资格标准和多种疗法和/或组织学评估定义的主协议。因此,亚群异质性的表征已成为研究设计的制定和选择的核心。但是,这种向主协议的过渡导致了确定最佳试验设计和适当校准超参数的挑战。我们经常评估一系列无效和替代方案,但是关于如何综合可能最佳的潜在建议的建议,几乎没有指导。这可能导致选择不完全适应亚群异质性的次优设计和统计方法。本文提出了新的优化标准,用于校准和评估主方案的候选统计设计,而在有可能的治疗效应效应异质性异质性的情况下,则提出了新的优化标准。当治疗提供异质益处并确定设计的最佳设计以监测具有不同临床指示的患者中使用贝叶斯建模的患者中,该框架用于证明常规研究设计的统计特性,并确定了最佳设计。

Breakthroughs in cancer biology have defined new research programs emphasizing the development of therapies that target specific pathways in tumor cells. Innovations in clinical trial design have followed with master protocols defined by inclusive eligibility criteria and evaluations of multiple therapies and/or histologies. Consequently, characterization of subpopulation heterogeneity has become central to the formulation and selection of a study design. However, this transition to master protocols has led to challenges in identifying the optimal trial design and proper calibration of hyperparameters. We often evaluate a range of null and alternative scenarios, however there has been little guidance on how to synthesize the potentially disparate recommendations for what may be optimal. This may lead to the selection of suboptimal designs and statistical methods that do not fully accommodate the subpopulation heterogeneity. This article proposes novel optimization criteria for calibrating and evaluating candidate statistical designs of master protocols in the presence of the potential for treatment effect heterogeneity among enrolled patient subpopulations. The framework is applied to demonstrate the statistical properties of conventional study designs when treatments offer heterogeneous benefit as well as identify optimal designs devised to monitor the potential for heterogeneity among patients with differing clinical indications using Bayesian modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源