论文标题

无序的非热系统的皮肤效应和缠绕数

Skin effect and winding number in disordered non-Hermitian systems

论文作者

Claes, Jahan, Hughes, Taylor L.

论文摘要

与他们的Hermitian同行不同,非热式(NH)系统可能会在具有开放边界的系统中对边界条件的指数敏感性和大量的边缘位置状态,这一现象被称为“非甲米皮效应”。 NH皮肤效应是定义NH汉密尔顿人拓扑理论的主要挑战之一,因为对边界条件的敏感性使传统的庞大边界对应关系无效。 NH皮肤效应最近已连接到绕组数,这是NH系统独有的拓扑不变。在本文中,我们通过概括了无序的Hermitian拓扑绝缘子,将绕组数的定义扩展到无序的NH系统。我们的真实空间绕组数是自动平均的,它是问题中参数的函数,即使在存在较强的疾病的情况下,也会量化。我们验证了我们的真实空间公式仍然可以预测NH皮肤效应,从而可以预测和观察强烈无序的NH系统中NH皮肤效应。作为应用程序,我们将结果应用于预测NH Anderson皮肤效应,在将皮肤效应添加到干净的系统中,并解释了光学漏斗中的最新结果。

Unlike their Hermitian counterparts, non-Hermitian (NH) systems may display an exponential sensitivity to boundary conditions and an extensive number of edge-localized states in systems with open boundaries, a phenomena dubbed the "non-Hermitian skin effect." The NH skin effect is one of the primary challenges to defining a topological theory of NH Hamiltonians, as the sensitivity to boundary conditions invalidates the traditional bulk-boundary correspondence. The NH skin effect has recently been connected to the winding number, a topological invariant unique to NH systems. In this paper, we extend the definition of the winding number to disordered NH systems by generalizing established results on disordered Hermitian topological insulators. Our real-space winding number is self-averaging, continuous as a function of the parameters in the problem, and remains quantized even in the presence of strong disorder. We verify that our real-space formula still predicts the NH skin effect, allowing for the possibility of predicting and observing the NH skin effect in strongly disordered NH systems. As an application we apply our results to predict a NH Anderson skin effect where a skin effect is developed as disorder is added to a clean system, and to explain recent results in optical funnels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源