论文标题
在罗斯定理中打破对数障碍的算术进展
Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions
论文作者
论文摘要
我们表明,如果$ a \ subset \ {1,\ ldots,n \} $不包含非平凡的三项算术进程,则$ \ lvert a \ rvert a \ rvert \ ll n/(\ log n/(\ log n)^{1+c} {1+c} $对于某些绝对常数$ c> 0 $。特别是,这证明了第一个在算术进程中的Erds的猜想的第一个非平凡案例。
We show that if $A\subset \{1,\ldots,N\}$ contains no non-trivial three-term arithmetic progressions then $\lvert A\rvert \ll N/(\log N)^{1+c}$ for some absolute constant $c>0$. In particular, this proves the first non-trivial case of a conjecture of Erdős on arithmetic progressions.