论文标题

在机器人手术中使用图结构表示的学习和推理

Learning and Reasoning with the Graph Structure Representation in Robotic Surgery

论文作者

Islam, Mobarakol, Seenivasan, Lalithkumar, Ming, Lim Chwee, Ren, Hongliang

论文摘要

学习在复杂的手术环境中推断图形表示并执行空间推理可以在机器人手术中的手术现场理解中起着至关重要的作用。为此,我们开发了一种生成场景图的方法,并在机器人辅助手术过程中预测工具与手术区域(ROI)之间的手术相互作用。我们设计了注意力链接功能并与图形解析网络集成以识别手术相互作用。要嵌入每个节点具有相应的相邻节点特征,我们将SageConv进一步融合到网络中。场景图生成和活动边缘分类主要取决于从复杂图像表示中的节点和边缘特征的嵌入或特征提取。在这里,我们通过使用标签平滑的加权损失来凭经验证明特征提取方法。平滑硬标签可以避免模型的过度自信预测,并增强倒数第二层学到的特征表示。为了获得图表标签,我们注释了在机器人手术方面经验丰富的临床专家,在机器人场景分割挑战赛上注释了边界框和仪器-ROI相互作用,并采用它来评估我们的命题。

Learning to infer graph representations and performing spatial reasoning in a complex surgical environment can play a vital role in surgical scene understanding in robotic surgery. For this purpose, we develop an approach to generate the scene graph and predict surgical interactions between instruments and surgical region of interest (ROI) during robot-assisted surgery. We design an attention link function and integrate with a graph parsing network to recognize the surgical interactions. To embed each node with corresponding neighbouring node features, we further incorporate SageConv into the network. The scene graph generation and active edge classification mostly depend on the embedding or feature extraction of node and edge features from complex image representation. Here, we empirically demonstrate the feature extraction methods by employing label smoothing weighted loss. Smoothing the hard label can avoid the over-confident prediction of the model and enhances the feature representation learned by the penultimate layer. To obtain the graph scene label, we annotate the bounding box and the instrument-ROI interactions on the robotic scene segmentation challenge 2018 dataset with an experienced clinical expert in robotic surgery and employ it to evaluate our propositions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源