论文标题
快速扰动算法配置器
Fast Perturbative Algorithm Configurators
论文作者
论文摘要
最近的工作表明,Paramrls和Paramils算法配置器可以在参数空间的大小中调整一些简单的随机搜索启发式,以在线性预期时间中的标准基准函数。在本文中,我们证明了预期时间的线性下限,以优化Paramrl,Paramils以及较大类别的算法配置器的任何参数调整问题。我们为扰动算法配置器提出了一个谐波突变操作员,该算法可证明对单峰和大约单峰的聚类时间中的单参数算法进行调音(即,非平滑型,都在朝着最佳的梯度倾向于最佳的梯度)。它适合作为通用操作员,因为即使在最坏的案例(例如欺骗性)景观上,它最多只能比对数因子要慢,而不是paramrls和paramils使用的默认因子。实验分析证实了该方法在许多配置方案中的优越性,包括涉及多个参数的方案。
Recent work has shown that the ParamRLS and ParamILS algorithm configurators can tune some simple randomised search heuristics for standard benchmark functions in linear expected time in the size of the parameter space. In this paper we prove a linear lower bound on the expected time to optimise any parameter tuning problem for ParamRLS, ParamILS as well as for larger classes of algorithm configurators. We propose a harmonic mutation operator for perturbative algorithm configurators that provably tunes single-parameter algorithms in polylogarithmic time for unimodal and approximately unimodal (i.e., non-smooth, rugged with an underlying gradient towards the optimum) parameter spaces. It is suitable as a general-purpose operator since even on worst-case (e.g., deceptive) landscapes it is only by at most a logarithmic factor slower than the default ones used by ParamRLS and ParamILS. An experimental analysis confirms the superiority of the approach in practice for a number of configuration scenarios, including ones involving more than one parameter.