论文标题

通过图像综合和基于注意力的深神经网络从计算机断层扫描图像中自动缺血性卒中病变分割

Automatic Ischemic Stroke Lesion Segmentation from Computed Tomography Perfusion Images by Image Synthesis and Attention-Based Deep Neural Networks

论文作者

Wang, Guotai, Song, Tao, Dong, Qiang, Cui, Mei, Huang, Ning, Zhang, Shaoting

论文摘要

来自计算机断层扫描(CTP)图像的缺血性中风病变分割对于准确诊断急性护理单元中的中风很重要。然而,除了病变的复杂外观外,灌注参数图的低图像对比度和分辨率都受到挑战。为了解决这个问题,我们提出了一个基于合成的伪扩散加权成像(DWI)的新框架,从灌注参数图中获得了更好的图像质量,以更准确。我们的框架由基于卷积神经网络(CNN)的三个组成部分组成,并经过训练。首先,使用特征提取器来获得原始时空计算机层析造影术(CTA)图像的低级和高级紧凑表示。其次,伪DWI发电机将CTP灌注参数图的串联和我们提取的特征作为输入,以获得合成的伪DWI。为了获得更好的合成质量,我们提出了一种混合损失功能,该功能更多地关注病变区域并鼓励高级上下文一致性。最后,我们从合成的伪DWI分段病变区域,其中分割网络基于可切换归一化和通道校准,以提高性能。实验结果表明,我们的框架在Isles 2018挑战上达到了最高的性能; 1)我们使用合成的伪DWI的方法优于直接从灌注参数图中分割病变的方法; 2)利用其他时空CTA图像的特征提取器导致更好合成的伪DWI质量和更高的分割精度; 3)提出的损失函数和网络结构改善了伪DWI合成和病变分割性能。

Ischemic stroke lesion segmentation from Computed Tomography Perfusion (CTP) images is important for accurate diagnosis of stroke in acute care units. However, it is challenged by low image contrast and resolution of the perfusion parameter maps, in addition to the complex appearance of the lesion. To deal with this problem, we propose a novel framework based on synthesized pseudo Diffusion-Weighted Imaging (DWI) from perfusion parameter maps to obtain better image quality for more accurate segmentation. Our framework consists of three components based on Convolutional Neural Networks (CNNs) and is trained end-to-end. First, a feature extractor is used to obtain both a low-level and high-level compact representation of the raw spatiotemporal Computed Tomography Angiography (CTA) images. Second, a pseudo DWI generator takes as input the concatenation of CTP perfusion parameter maps and our extracted features to obtain the synthesized pseudo DWI. To achieve better synthesis quality, we propose a hybrid loss function that pays more attention to lesion regions and encourages high-level contextual consistency. Finally, we segment the lesion region from the synthesized pseudo DWI, where the segmentation network is based on switchable normalization and channel calibration for better performance. Experimental results showed that our framework achieved the top performance on ISLES 2018 challenge and: 1) our method using synthesized pseudo DWI outperformed methods segmenting the lesion from perfusion parameter maps directly; 2) the feature extractor exploiting additional spatiotemporal CTA images led to better synthesized pseudo DWI quality and higher segmentation accuracy; and 3) the proposed loss functions and network structure improved the pseudo DWI synthesis and lesion segmentation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源