论文标题
通过3D多尺度形态学筛分在乳房MRI中自动病变检测,分割和表征
Automatic lesion detection, segmentation and characterization via 3D multiscale morphological sifting in breast MRI
论文作者
论文摘要
先前在4D乳腺磁共振成像(MRI)中对计算机辅助检测/诊断(CAD)的研究将病变检测,分割和表征视为单独的任务,通常要求用户手动选择2D MRI切片或感兴趣的区域作为输入。在这项工作中,我们提出了一个可以处理4D多模式MRI数据的乳房MRI CAD系统,并在没有用户干预的情况下整合病变检测,细分和表征。所提出的CAD系统包括三个主要阶段:候选区域的产生,特征提取和区域候选分类。首先使用新型的3D多尺度形态筛(MMS)提取乳房病变作为区域候选。使用线性结构元件来提取类似病变的模式的3D MM可以准确有效地从乳腺图像中分割损伤。然后从所有可用的4D多模式乳腺MRI序列(包括T1-,T2加权和DCE序列)中提取分析特征,以表示该地区候选者的信号强度,纹理,形态和增强动力学特征。该区域候选者最后通过随机的下采样促进(rusboost)和随机森林将其分类为病变或正常组织。在乳房MRI数据集上进行评估,该数据集包含117例恶性肿瘤和46个良性病变的病例,拟议的系统在每名患者(FPP)的误报(FPP)中,以3.19的误差为0.90,用于识别识别率为2.95的fpp为0.91,而无需任何识别率的fpp。病变分割的平均骰子相似性指数(DSI)为0.72。与在同一乳房MRI数据集上评估的先前提议的系统相比,提出的CAD系统在乳腺病变检测和表征方面取得了良好的表现。
Previous studies on computer aided detection/diagnosis (CAD) in 4D breast magnetic resonance imaging (MRI) regard lesion detection, segmentation and characterization as separate tasks, and typically require users to manually select 2D MRI slices or regions of interest as the input. In this work, we present a breast MRI CAD system that can handle 4D multimodal breast MRI data, and integrate lesion detection, segmentation and characterization with no user intervention. The proposed CAD system consists of three major stages: region candidate generation, feature extraction and region candidate classification. Breast lesions are firstly extracted as region candidates using the novel 3D multiscale morphological sifting (MMS). The 3D MMS, which uses linear structuring elements to extract lesion-like patterns, can segment lesions from breast images accurately and efficiently. Analytical features are then extracted from all available 4D multimodal breast MRI sequences, including T1-, T2-weighted and DCE sequences, to represent the signal intensity, texture, morphological and enhancement kinetic characteristics of the region candidates. The region candidates are lastly classified as lesion or normal tissue by the random under-sampling boost (RUSboost), and as malignant or benign lesion by the random forest. Evaluated on a breast MRI dataset which contains a total of 117 cases with 95 malignant and 46 benign lesions, the proposed system achieves a true positive rate (TPR) of 0.90 at 3.19 false positives per patient (FPP) for lesion detection and a TPR of 0.91 at a FPP of 2.95 for identifying malignant lesions without any user intervention. The average dice similarity index (DSI) is 0.72 for lesion segmentation. Compared with previously proposed systems evaluated on the same breast MRI dataset, the proposed CAD system achieves a favourable performance in breast lesion detection and characterization.