论文标题
肾脏交换与不均匀的边缘存在不确定性
Kidney Exchange with Inhomogeneous Edge Existence Uncertainty
论文作者
论文摘要
在肾脏交换的驱动下,我们研究了一个随机循环和链条包装问题,我们旨在在有向图中识别结构,以最大程度地提高匹配边缘重量的期望。所有边缘都会遭受故障的影响,故障可能具有非相同的概率。据我们所知,只有在失败概率相同的情况下,最先进的方法才能处理。我们制定了相关的非凸优化问题,并提出了可解决的混合构成线性编程重新印象以解决该问题。此外,我们提出了一个模型,该模型通过将风险的条件值(CVAR)纳入目标函数,为此问题提供了强大的配方,从而整合了匹配的风险和预期的匹配实用程序。随后,我们提出了一种基于样本 - 平均附属物(SAA)解决此问题的方法。我们测试了联合器官共享网络(UNOS)的数据方法,并与最新方法进行比较。我们的模型提供与领先的确定性方法(PICEF)相同的运行时间提供更好的性能。我们使用基于SAA的方法的CVAR扩展可以改善$α\ times 100 \%$($ 0 <α\ leqslant 1 $ 1 $)最差的性能与现有型号相比。
Motivated by kidney exchange, we study a stochastic cycle and chain packing problem, where we aim to identify structures in a directed graph to maximize the expectation of matched edge weights. All edges are subject to failure, and the failures can have nonidentical probabilities. To the best of our knowledge, the state-of-the-art approaches are only tractable when failure probabilities are identical. We formulate a relevant non-convex optimization problem and propose a tractable mixed-integer linear programming reformulation to solve it. In addition, we propose a model that integrates both risks and the expected utilities of the matching by incorporating conditional value at risk (CVaR) into the objective function, providing a robust formulation for this problem. Subsequently, we propose a sample-average-approximation (SAA) based approach to solve this problem. We test our approaches on data from the United Network for Organ Sharing (UNOS) and compare against state-of-the-art approaches. Our model provides better performance with the same running time as a leading deterministic approach (PICEF). Our CVaR extensions with an SAA-based method improves the $α\times 100\%$ ($0<α\leqslant 1$) worst-case performance substantially compared to existing models.