论文标题

基于全电子高斯的$ g_0w_0 $ for Valence和核心激发能量周期系统

All-electron Gaussian-based $G_0W_0$ for Valence and Core Excitation Energies of Periodic Systems

论文作者

Zhu, Tianyu, Chan, Garnet Kin-Lic

论文摘要

我们描述了一个全电子$ G_0W_0 $实现,用于以$ K $ - 点采样为基础的定期系统。我们的全频$ G_0W_0 $方法依赖于有效的高斯密度拟合积分,并包括分析延续和轮廓变形方案。由于高斯碱基的紧凑性,在许多平面波公式中所见,不需要虚拟状态截断。通过将$ Q \至0 $限制的库仑发散限制包括在内。使用我们的实施,我们研究了跨各种系统的准颗粒能和带结构,包括分子,半导体,稀有气体固体和金属。我们发现,即使对于常规挑战性的ZnO案例,传统半导体的$ G_0W_0 $带差也会迅速汇合。使用偏振三ZETA质量的相关矛盾基础,我们发现被外推$ G_0W_0 $@PBE频段差距的平均绝对相对误差仅为5.2%,而实验值则仅为5.2%。对于核心激发绑定能(CEBES),我们发现,如果$ G_0W_0 $的预测$ G_0W_0 $,则如果$ G_0W_0 $计算的计算始于$ g_0w_0 $,则具有高度交换百分比的混合功能。

We describe an all-electron $G_0W_0$ implementation for periodic systems with $k$-point sampling implemented in a crystalline Gaussian basis. Our full-frequency $G_0W_0$ method relies on efficient Gaussian density fitting integrals and includes both analytic continuation and contour deformation schemes. Due to the compactness of Gaussian bases, no virtual state truncation is required as is seen in many plane-wave formulations. Finite size corrections are included by taking the $q \to 0$ limit of the Coulomb divergence. Using our implementation, we study quasiparticle energies and band structures across a range of systems including molecules, semiconductors, rare gas solids, and metals. We find that the $G_0W_0$ band gaps of traditional semiconductors converge rapidly with respect to the basis size, even for the conventionally challenging case of ZnO. Using correlation-consistent bases of polarized triple-zeta quality, we find the mean absolute relative error of the extrapolated $G_0W_0$@PBE band gaps to be only 5.2% when compared to experimental values. For core excitation binding energies (CEBEs), we find that $G_0W_0$ predictions improve significantly over those from DFT if the $G_0W_0$ calculations are started from hybrid functionals with a high percentage of exact exchange.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源