论文标题
复杂空间形式中恒定kahler角的自由边界最小表面
Free-Boundary Minimal Surfaces of Constant Kahler Angle in Complex Space Forms
论文作者
论文摘要
在真实的太空形式中,弗雷泽(Fraser)和肖恩(Schoen)证明,在大地球上,一个自由边缘的最小磁盘完全是大地测量的。在本说明中,我们考虑了复杂空间形式的大地测量球中的自由边界最小表面$σ$(任何属的)。在$ \ mathbb {cp}^2 $,$ \ mathbb {c}^2 $和$ \ mathbb {ch}^2 $中,我们表明,如果$σ$是lagrangian,则$σ$是完全geodesic的。在$ \ mathbb {cp}^n $,$ \ mathbb {c}^n $和$ \ mathbb {ch}^n $ for $ n \ geq 2 $中,我们表明,如果$σ$akähllerangle $π/2 $,那么$§σ$是superminimal。
In real space forms, Fraser and Schoen proved that a free-boundary minimal disk in a geodesic ball is totally geodesic. In this note, we consider free-boundary minimal surfaces $Σ$ (of any genus) in geodesic balls of complex space forms. In $\mathbb{CP}^2$, $\mathbb{C}^2$ and $\mathbb{CH}^2$, we show that if $Σ$ is Lagrangian, then $Σ$ is totally geodesic. In $\mathbb{CP}^n$, $\mathbb{C}^n$ and $\mathbb{CH}^n$ for $n \geq 2$, we show that if $Σ$ has Kähler angle $π/2$, then $Σ$ is superminimal.