论文标题
通过深神经网络优化的多保真贝叶斯优化
Multi-Fidelity Bayesian Optimization via Deep Neural Networks
论文作者
论文摘要
贝叶斯优化(BO)是优化黑框功能的流行框架。在许多应用中,可以以多个保真度评估目标函数,以在成本和准确性之间进行权衡。为了降低优化成本,已经提出了许多多保真BO方法。尽管它们取得了成功,但这些方法要么忽略或过度简化整个保真度的强,复杂的相关性,因此可能无法估算目标函数。为了解决这个问题,我们提出了深层神经网络多保真贝叶斯优化(DNN-MFBO),可以灵活地捕获富裕度之间的各种复杂关系,以改善目标函数估计,从而优化性能。我们使用顺序的,忠诚度的高斯 - 温矿正交和力矩匹配来实现基于信息的采集函数,这在计算上是可易和有效的。我们在合成基准数据集和工程设计中的现实应用程序中都显示了我们方法的优势。
Bayesian optimization (BO) is a popular framework to optimize black-box functions. In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy. To reduce the optimization cost, many multi-fidelity BO methods have been proposed. Despite their success, these methods either ignore or over-simplify the strong, complex correlations across the fidelities, and hence can be inefficient in estimating the objective function. To address this issue, we propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities to improve the objective function estimation and hence the optimization performance. We use sequential, fidelity-wise Gauss-Hermite quadrature and moment-matching to fulfill a mutual information-based acquisition function, which is computationally tractable and efficient. We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.