论文标题

SARS-COV-2参数网络预测流行病的统计物理学

Statistical Physics of Epidemic on Network Predictions for SARS-CoV-2 Parameters

论文作者

Han, Jungmin, Cresswell-Clay, Evan C, Periwal, Vipul

论文摘要

SARS-COV-2大流行需要在世界范围内进行缓解工作。我们仅在第一次死亡后两周内仅报告死亡来确定感染参数,以预测隐藏变量,例如感染数量的时间依赖性。早期死亡是零星和离散的,因此使用网络模型的流行差异是必须的,网络本身是至关重要的随机变量。当尝试使用参数化模型适应这些事件时,必须考虑特定于位置的人口年龄分布和人口密度。这些特征使天真的贝叶斯模型比较不切实际,因为网络必须足够大以避免有限尺寸的效果。我们重新制定了这个问题,为弹性弹簧的56448参数化模型的六维晶格中附着在每个模型中的独立位置特异性“球”的统计物理,并由该模型的网络流行性模拟的随机性确定。然后,球的分布确定所有贝叶斯后期期望。传染的重要特征是可以确定的:死亡的感染患者的比例(0.017 \ pm 0.009 $),感染者具有感染性的预期($ 22 \ pm 6美元),以及第一次感染与第一次死亡($ 25 \ pm 8 $ days)之间的预期时间。受感染个体数量的指​​数增加率为$ 0.18 \ pm 0.03 $每天$ 0.03 $,对应于单个初始感染的一百天内的6500万受感染者,该感染降至166000,甚至不完善的社会疏远甚至不完善的社会距离在第一次记录死亡后两周有效。符合社会距离的个人的比例小于减少社会接触的比例,以改变感染的累积数量。

The SARS-CoV-2 pandemic has necessitated mitigation efforts around the world. We use only reported deaths in the two weeks after the first death to determine infection parameters, in order to make predictions of hidden variables such as the time dependence of the number of infections. Early deaths are sporadic and discrete so the use of network models of epidemic spread is imperative, with the network itself a crucial random variable. Location-specific population age distributions and population densities must be taken into account when attempting to fit these events with parametrized models. These characteristics render naive Bayesian model comparison impractical as the networks have to be large enough to avoid finite-size effects. We reformulated this problem as the statistical physics of independent location-specific `balls' attached to every model in a six-dimensional lattice of 56448 parametrized models by elastic springs, with model-specific `spring constants' determined by the stochasticity of network epidemic simulations for that model. The distribution of balls then determines all Bayes posterior expectations. Important characteristics of the contagion are determinable: the fraction of infected patients that die ($0.017\pm 0.009$), the expected period an infected person is contagious ($22 \pm 6$ days) and the expected time between the first infection and the first death ($25 \pm 8$ days) in the US. The rate of exponential increase in the number of infected individuals is $0.18\pm 0.03$ per day, corresponding to 65 million infected individuals in one hundred days from a single initial infection, which fell to 166000 with even imperfect social distancing effectuated two weeks after the first recorded death. The fraction of compliant socially-distancing individuals matters less than their fraction of social contact reduction for altering the cumulative number of infections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源