论文标题
猛禽II:弯曲时空中的极化辐射转移
RAPTOR II: Polarized radiative transfer in curved spacetime
论文作者
论文摘要
吸收超质量黑洞是极化辐射的来源,在到达观察者之前,可以通过高度弯曲的时空传播。为了帮助解释这种极化发射的观察,需要在弯曲的时空中进行极化辐射转移的准确有效的数值方案。在本手稿中,我们将公开可用的辐射传输代码猛禽扩展到包括极化。我们简要审查了文献和现有代码中可用的协方差辐射转移的不同代码和方法,并提出了有效的新方案。对于计算的时空传播方面,我们开发了偏光射线的紧凑,洛伦兹 - 不变的表示。对于计算的质量传播方面,我们对相对于我们的明确集成剂的极化辐射传输方程的刚度进行正式分析,并开发了一个混合整合方案,该方案在僵硬的情况下切换到隐式集成器,以便以最佳的速度和准确的速度和精度的plas the plas flas/faladay fladay shore soldation soldation soldation。我们通过使用Raptor解决了许多众所周知的测试问题,并将其输出与精确解决方案进行比较,来执行全面的代码验证。在复杂的天体物理问题的背景下,我们还证明了与现有的极化辐射转移代码的收敛性。猛禽能够在任意高度弯曲的空间中进行极化的辐射转移。该能力对于解释积聚黑洞的极化观察至关重要,这可以产生有关这种吸积分中磁场构型的信息。在猛禽中实施的有效形式主义在计算上是光线和概念上简单的。该代码公开可用。
Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime before reaching the observer. In order to help interpret observations of such polarized emission, accurate and efficient numerical schemes for polarized radiative transfer in curved spacetime are needed. In this manuscript we extend our publicly available radiative transfer code RAPTOR to include polarization. We provide a brief review of different codes and methods for covariant polarized radiative transfer available in the literature and existing codes, and present an efficient new scheme. For the spacetime-propagation aspect of the computation, we develop a compact, Lorentz-invariant representation of a polarized ray. For the plasma-propagation aspect of the computation, we perform a formal analysis of the stiffness of the polarized radiative-transfer equation with respect to our explicit integrator, and develop a hybrid integration scheme that switches to an implicit integrator in case of stiffness, in order to solve the equation with optimal speed and accuracy for all possible values of the local optical/Faraday thickness of the plasma. We perform a comprehensive code verification by solving a number of well-known test problems using RAPTOR and comparing its output to exact solutions. We also demonstrate convergence with existing polarized radiative-transfer codes in the context of complex astrophysical problems. RAPTOR is capable of performing polarized radiative transfer in arbitrary, highly curved spacetimes. This capability is crucial for interpreting polarized observations of accreting black holes, which can yield information about the magnetic-field configuration in such accretion flows. The efficient formalism implemented in RAPTOR is computationally light and conceptually simple. The code is publicly available.