论文标题
测量引起的(2+1)-D混合量子电路中的临界值
Measurement-induced criticality in (2+1)-d hybrid quantum circuits
论文作者
论文摘要
我们研究了随机统一门和局部投影测量的综合作用,研究了二维量子自旋系统的动力学。在考虑稳态时,测量引起的过渡发生在两个不同的动态阶段之间,一个阶段的特征是纠缠熵的体积尺度缩放,另一个是区域法。使用稳定器状态和Clifford随机门,我们在数值上研究了线性尺寸的正方形晶格,最高$ L = 48 $,用于两个不同的测量协议。对于这两种方案,我们都观察到一个过渡点,其中纠缠熵的主要贡献显示出对区域法的乘法对数违规行为。我们获得了百分比中相关长度关键指数的估计;这些估计表明了普遍的行为,并且与3D渗透的通用类别不兼容。
We investigate the dynamics of two-dimensional quantum spin systems under the combined effect of random unitary gates and local projective measurements. When considering steady states, a measurement-induced transition occurs between two distinct dynamical phases, one characterized by a volume-law scaling of entanglement entropy, the other by an area-law. Employing stabilizer states and Clifford random unitary gates, we numerically investigate square lattices of linear dimension up to $L=48$ for two distinct measurement protocols. For both protocols, we observe a transition point where the dominant contribution in the entanglement entropy displays multiplicative logarithmic violations to the area-law. We obtain estimates of the correlation length critical exponent at the percent level; these estimates suggest universal behavior, and are incompatible with the universality class of 3D percolation.