论文标题
IMU预先整合的特征,可有效地深入惯性进程
IMU Preintegrated Features for Efficient Deep Inertial Odometry
论文作者
论文摘要
MEMS惯性测量单元(IMU)作为普遍存在的本体感受运动测量设备,可在各种日常小工具和机器人平台上使用。然而,仅基于这些数据的几何转换或探测仪的直接推断是一项艰巨的任务。这是由于传感器难以模型的缺陷和高噪声特征,这激发了将系统制定为端到端学习问题的研究,在该问题中,利用了代理的运动模式来促进更好的探测器估计。但是,这种好处是以高计算和内存需求为代价的,这使得不适合低功率和边缘应用的深度惯性探测器。本文试图通过提出IMU预先整合的特征来解决这一冲突,以替代深惯性检验中的原始IMU数据。这些功能利用IMU运动模型的多种结构,提供了一个时间压缩的运动表示,可保留重要的几何信息。我们证明了这种方法在行人运动估计和自动驾驶汽车的两种应用上的惯性进程任务的有效性和效率。与原始输入相比,我们在减轻计算负担的同时显示了性能提高。此外,我们通过对资源约束的微控制器的嵌入式实现来证明这种方法的效率。
MEMS Inertial Measurement Units (IMUs) as ubiquitous proprioceptive motion measurement devices are available on various everyday gadgets and robotic platforms. Nevertheless, the direct inference of geometrical transformations or odometry based on these data alone is a challenging task. This is due to the hard-to-model imperfections and high noise characteristics of the sensor, which has motivated research in formulating the system as an end-to-end learning problem, where the motion patterns of the agent are exploited to facilitate better odometry estimates. However, this benefit comes at the cost of high computation and memory requirements, which makes deep inertial odometry unsuitable for low-power and edge applications. This paper attempts to address this conflict by proposing the IMU preintegrated features as a replacement for the raw IMU data in deep inertial odometry. Exploiting the manifold structure of the IMU motion model, these features provide a temporally compressed motion representation that preserves important geometrical information. We demonstrate the effectiveness and efficiency of this approach for the task of inertial odometry on two applications of pedestrian motion estimation and autonomous vehicles. We show a performance improvement compared to raw inputs while reducing the computational burdens. Additionally, we demonstrate the efficiency of this approach through an embedded implementation on a resource-constrained microcontroller.