论文标题
自适应图卷积卷积网络用于流量预测
Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
论文作者
论文摘要
在相关时间序列数据中对复杂的空间和时间相关性进行建模是必不可少的,这对于了解流量动态并预测不断发展的流量系统的未来状态是必不可少的。最近的作品着重于设计复杂的图形神经网络体系结构,以借助预定义的图来捕获共享模式。在本文中,我们认为学习节点特异性模式对于预测流量至关重要,而预定的图是可以避免的。为此,我们提出了两个具有新功能的自适应模块,以增强图形卷积网络(GCN):1)节点自适应参数学习(NAPL)模块以捕获节点特异性模式; 2)数据自适应图生成(DAGG)模块可以自动推断不同流量系列之间的相互依存关系。我们进一步提出了一个自适应图卷积复发网络(AGCRN),以根据两个模块和复发网络自动捕获流量系列中的细粒空间和时间相关性。我们在两个现实世界流量数据集上的实验表明,AGCRN的表现优于最先进的边距,而没有关于空间连接的预定义图。
Modeling complex spatial and temporal correlations in the correlated time series data is indispensable for understanding the traffic dynamics and predicting the future status of an evolving traffic system. Recent works focus on designing complicated graph neural network architectures to capture shared patterns with the help of pre-defined graphs. In this paper, we argue that learning node-specific patterns is essential for traffic forecasting while the pre-defined graph is avoidable. To this end, we propose two adaptive modules for enhancing Graph Convolutional Network (GCN) with new capabilities: 1) a Node Adaptive Parameter Learning (NAPL) module to capture node-specific patterns; 2) a Data Adaptive Graph Generation (DAGG) module to infer the inter-dependencies among different traffic series automatically. We further propose an Adaptive Graph Convolutional Recurrent Network (AGCRN) to capture fine-grained spatial and temporal correlations in traffic series automatically based on the two modules and recurrent networks. Our experiments on two real-world traffic datasets show AGCRN outperforms state-of-the-art by a significant margin without pre-defined graphs about spatial connections.