论文标题
具有最小熵产生的概率路径的信息几何方面用于量子状态进化
Information Geometric Aspects of Probability Paths with Minimum Entropy Production for Quantum State Evolution
论文作者
论文摘要
我们介绍了熵速度和熵产生速率的信息几何分析,这是由纯量子状态参数征象的歧管进化引起的。特别是,我们采用了纯状态,这些状态出现为适当选择的su(2; c)时间依赖的汉密尔顿运算符的输出,这些输出表征了特定类型的模拟量子搜索算法。 SU(2; c)正在考虑的哈密顿模型由浸入Spin-1/2测试颗粒的外部时间依赖性磁场指定。 Fisher信息功能提供了参数歧管的积极确定的Riemannian Metrrization。沿着这些自旋1/2测试粒子的时间演化获得的参数平方概率幅度评估了Fisher信息函数。然后,使用最小的动作方法来诱导量子系统从其初始状态转移到其最终状态,以在有限的时间间隔上进行参数歧管。我们以一种明确的方式证明了最小(即最佳)路径对应于初始状态和最终状态之间的最短(即测地)路径。此外,我们表明,最小路径也可以最大程度地减少状态转移期间发生的总熵产生。最后,在评估熵速度以及在模拟量子搜索算法中的几种物理感兴趣的情况下沿最佳转移路径的总熵产生后,我们以透明的定量方式证明了更快的传递和更高的熵产生速率之间的对应关系。因此,我们得出的结论是,在量子状态转移的背景下,较高的熵速与较低的熵效率有关。
We present an information geometric analysis of both entropic speeds and entropy production rates arising from geodesic evolution on manifolds parametrized by pure quantum states. In particular, we employ pure states that emerge as outputs of suitably chosen su(2; C) time-dependent Hamiltonian operators that characterize analog quantum search algorithms of specific types. The su(2; C) Hamiltonian models under consideration are specified by external time-dependent magnetic fields within which spin-1/2 test particles are immersed. The positive definite Riemannian metrization of the parameter manifold is furnished by the Fisher information function. The Fisher information function is evaluated along parametrized squared probability amplitudes obtained from the temporal evolution of these spin-1/2 test particles. A minimum action approach is then utilized to induce the transfer of the quantum system from its initial state to its final state on the parameter manifold over a finite temporal interval. We demonstrate in an explicit manner that the minimal (that is, optimum) path corresponds to the shortest (that is, geodesic) path between the initial and final states. Furthermore, we show that the minimal path serves also to minimize the total entropy production occurring during the transfer of states. Finally, upon evaluating the entropic speed as well as the total entropy production along optimal transfer paths within several scenarios of physical interest in analog quantum searching algorithms, we demonstrate in a transparent quantitative manner a correspondence between a faster transfer and a higher rate of entropy production. We therefore conclude that higher entropic speed is associated with lower entropic efficiency within the context of quantum state transfer.