论文标题

在反问题中对二聚体数据驱动学习的一致性分析

Consistency analysis of bilevel data-driven learning in inverse problems

论文作者

Chada, Neil K., Schillings, Claudia, Tong, Xin T., Weissmann, Simon

论文摘要

解决逆问题时,一个基本问题是如何找到正则化参数。本文考虑使用数据驱动的双重优化来解决此问题,即我们考虑通过优化从数据中对正则化参数的自适应学习。该方法可以解释为解决经验风险最小化问题,我们分析了其在一般非线性问题的大数据样本量限制中的性能。我们演示了如何在线性反问题上实施我们的框架,在那里我们可以进一步证明逆准确性不取决于环境空间维度。为了降低相关的计算成本,使用随机梯度下降方法得出在线数值方案。我们在适当的假设上证明了这些数值方案的收敛性。介绍了数值实验,以说明理论结果,并证明了针对各种线性和非线性反问题的建议方法的适用性和效率,包括Darcy流动,Eikonal方程以及图像Deosing示例。

One fundamental problem when solving inverse problems is how to find regularization parameters. This article considers solving this problem using data-driven bilevel optimization, i.e. we consider the adaptive learning of the regularization parameter from data by means of optimization. This approach can be interpreted as solving an empirical risk minimization problem, and we analyze its performance in the large data sample size limit for general nonlinear problems. We demonstrate how to implement our framework on linear inverse problems, where we can further show the inverse accuracy does not depend on the ambient space dimension. To reduce the associated computational cost, online numerical schemes are derived using the stochastic gradient descent method. We prove convergence of these numerical schemes under suitable assumptions on the forward problem. Numerical experiments are presented illustrating the theoretical results and demonstrating the applicability and efficiency of the proposed approaches for various linear and nonlinear inverse problems, including Darcy flow, the eikonal equation, and an image denoising example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源