论文标题

传感器数据与城市:城市可视化和福祉数据的聚集

Sensor Data and the City: Urban Visualisation and Aggregation of Well-Being Data

论文作者

Johnson, Thomas, Kanjo, Eiman, Woodward, Kieran

论文摘要

移动传感器技术的增长使市议会有可能了解人们在城市空间中的行为,这可能有助于减轻城市的压力。我们提出了一种定量方法,以传达一种集体的城市场所感。数据是在高水平的粒度水平上收集的,从而在广受欢迎的城市环境周围浏览了空间。我们通过利用环境和生理传感器的连续多模型传感器数据来捕获人们的行为。数据还用自我报告,位置坐标以及不同环境中的持续时间标记。该方法利用探索性数据可视化以及几何和空间数据分析算法,从而使数据簇与人们的行为相关的空间和时间比较。得出和量化这种含义使我们能够观察移动传感如何从这种人群分配的内容中揭示出位置的情感特征。

The growth of mobile sensor technologies have made it possible for city councils to understand peoples' behaviour in urban spaces which could help to reduce stress around the city. We present a quantitative approach to convey a collective sense of urban places. The data was collected at a high level of granularity, navigating the space around a highly popular urban environment. We capture people's behaviour by leveraging continuous multi-model sensor data from environmental and physiological sensors. The data is also tagged with self-report, location coordinates as well as the duration in different environments. The approach leverages an exploratory data visualisation along with geometrical and spatial data analysis algorithms, allowing spatial and temporal comparisons of data clusters in relation to people's behaviour. Deriving and quantifying such meaning allows us to observe how mobile sensing unveils the emotional characteristics of places from such crowd-contributed content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源