论文标题
RBF神经网络的多内核融合
Multi-Kernel Fusion for RBF Neural Networks
论文作者
论文摘要
径向基函数神经网络(RBFNN)的简单而有效的体系结构设计使它们成为最受欢迎的传统神经网络之一。当前一代的径向基函数神经网络配备了多个内核,与上一代仅使用单个内核相比,可提供显着的性能优势。在现有的多内核RBF算法中,多内核是由基础/主要核的凸组合形成的。在本文中,我们提出了一种新颖的多内核RBFNN,其中每个基本内核都有自己的(局部)重量。该网络中这种新颖的灵活性提供了更好的性能,例如更快的收敛速度,更好的本地最小值和抵御能力,以免卡在贫穷的本地最小值中。与当代多内核RBF算法相比,这些性能增长是在竞争性计算复杂性下实现的。对所提出的算法使用数学和图形插图进行了彻底分析,以获取性能增长,还对三种不同类型的问题进行了评估:(i)模式分类,(ii)系统识别和(iii)功能近似。经验结果清楚地表明,与现有的最新多内核方法相比,所提出的算法的优势。
A simple yet effective architectural design of radial basis function neural networks (RBFNN) makes them amongst the most popular conventional neural networks. The current generation of radial basis function neural network is equipped with multiple kernels which provide significant performance benefits compared to the previous generation using only a single kernel. In existing multi-kernel RBF algorithms, multi-kernel is formed by the convex combination of the base/primary kernels. In this paper, we propose a novel multi-kernel RBFNN in which every base kernel has its own (local) weight. This novel flexibility in the network provides better performance such as faster convergence rate, better local minima and resilience against stucking in poor local minima. These performance gains are achieved at a competitive computational complexity compared to the contemporary multi-kernel RBF algorithms. The proposed algorithm is thoroughly analysed for performance gain using mathematical and graphical illustrations and also evaluated on three different types of problems namely: (i) pattern classification, (ii) system identification and (iii) function approximation. Empirical results clearly show the superiority of the proposed algorithm compared to the existing state-of-the-art multi-kernel approaches.