论文标题

使用多药疗法进行协同目标参与攻击COVID-19的进展

Attacking COVID-19 Progression using Multi-Drug Therapy for Synergetic Target Engagement

论文作者

Coban, Mathew, PhD, Juliet Morrison, MD, William D. Freeman, PhD, Evette Radisky, PhD, Karine G. Le Roch, PhD, Thomas R. Caulfield

论文摘要

Covid-19是一种灾难性的呼吸道和炎症性疾病,由新的冠状病毒迅速扩散到整个人口中。在过去的6个月中,负责Covid-19的病毒(SARS-COV-2)严重的急性呼吸综合症2(SARS-COV-2)已经感染了超过1,160万(位于美国的25%),并杀死了全球超过54万人。当我们面对最近历史上最具挑战性的时代之一时,迫切需要确定可以在多个方面攻击SARS-COV-2的毒品。因此,我们使用分子建模,结构模拟,对接和机器学习模型启动了计算动力学管道,以预测几百万种化合物对两种必需的SARS-COV-2病毒蛋白及其宿主蛋白质相互作用的抑制作用; S/ACE2,TMPRSS2,组织蛋白酶L和K和MPRO,以防止病毒的结合,膜融合和复制。我们一起产生了一系列结构构象,这些结构构象会增加高质量的对接结果,以筛选超过600万种化合物,包括所有经FDA批准的药物,临床试验下的药物(> 3000)以及从碎片文库中的另外3000万个> 3000万选定的化学型。我们的结果从新的和FDA批准的化合物中产生了350种高价值化合物,现在可以在适当的生物学模型系统中进行实验测试。我们预计我们的结果将启动筛查运动,并加速发现Covid-19治疗方法。

COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 6 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 11.6 million (25% located in United States) and killed more than 540K people around the world. As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors; S/Ace2, Tmprss2, Cathepsins L and K, and Mpro to prevent binding, membrane fusion and replication of the virus, respectively. All together we generated an ensemble of structural conformations that increase high quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源