论文标题

双曲线上的cucker-smale羊群的紧急行为

Emergent behaviors of Cucker-Smale flocks on the hyperboloid

论文作者

Ahn, Hyunjin, Ha, Seung-Yeal, Park, Hansol, Shim, Woojoo

论文摘要

我们研究了在任何维度上的倍曲底$ \ mathbb {h}^d $上的cucker-smale(CS)羊群的紧急行为。在最近的工作\ cite {h-h-k-k-m}中,提出了倍曲底上的一阶聚合模型,并根据初始配置和系统参数分析了其新兴动力学。在本文中,我们对双曲线上的cucker-smale羊群的二阶建模感兴趣。为此,我们通过明确计算大地测量和平行传输来从完整和光滑的riemannian歧管上的抽象CS模型中得出二阶模型。通过结合一般{速度比对估计值}的速度比对,用于抽象CS模型的一般{速度比对估计值},对能量功能的第二个导数的先验估计值进行了验证和验证。对于二维情况,$ \ mathbb {h}^2 $,类似于\ cite {a-h-s-s}的最新结果,渐近羊群仅接受两种类型的渐近场景,要么融合了与静止状态或同一平面上的状态(Coplanar State)。我们还提供了几个数值模拟,以说明上述二分法有关$ \ Mathbb {h}^2 $上的倍曲底CS模型的渐近动力学。

We study emergent behaviors of Cucker-Smale(CS) flocks on the hyperboloid $\mathbb{H}^d$ in any dimensions. In a recent work \cite{H-H-K-K-M}, a first-order aggregation model on the hyperboloid was proposed and its emergent dynamics was analyzed in terms of initial configuration and system parameters. In this paper, we are interested in the second-order modeling of Cucker-Smale flocks on the hyperboloid. For this, we derive our second-order model from the abstract CS model on complete and smooth Riemannian manifolds by explicitly calculating the geodesic and parallel transport. Velocity alignment has been shown by combining general {velocity alignment estimates} for the abstract CS model on manifolds and verifications of a priori estimate of second derivative of energy functional. For the two-dimensional case $\mathbb{H}^2$, similar to the recent result in \cite{A-H-S}, asymptotic flocking admits only two types of asymptotic scenarios, either convergence to a rest state or a state lying on the same plane (coplanar state). We also provide several numerical simulations to illustrate an aforementioned dichotomy on the asymptotic dynamics of the hyperboloid CS model on $\mathbb{H}^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源