论文标题
使用社会卷积和注意力机制的交通代理轨迹预测
Traffic Agent Trajectory Prediction Using Social Convolution and Attention Mechanism
论文作者
论文摘要
该轨迹预测对于自动驾驶车辆的决策至关重要。在本文中,我们提出了一个模型,以预测围绕自动驾驶汽车的靶标的轨迹。我们方法的主要思想是考虑目标剂的历史轨迹以及周围剂对目标剂的影响。为此,我们将目标代理历史轨迹编码为注意力掩码,并构建社会图,以编码目标剂与其周围代理之间的交互关系。给定轨迹序列,首先利用LSTM网络来提取所有代理的功能,以此为基于注意力面罩和社交图。然后,将注意力面罩和社交图融合在一起以获取融合功能图,该图由社会卷积处理以获得融合功能表示。最后,将此融合功能视为可变长度LSTM的输入,以预测目标试剂的轨迹。我们注意到,可变长度LSTM使我们的模型能够处理传感范围中代理数量在交通场景中高度动态的情况。为了验证我们方法的有效性,我们与公共数据集上的几种方法进行了广泛的比较,从而达到了20%的误差降低。另外,该模型满足32 fps的实时需求。
The trajectory prediction is significant for the decision-making of autonomous driving vehicles. In this paper, we propose a model to predict the trajectories of target agents around an autonomous vehicle. The main idea of our method is considering the history trajectories of the target agent and the influence of surrounding agents on the target agent. To this end, we encode the target agent history trajectories as an attention mask and construct a social map to encode the interactive relationship between the target agent and its surrounding agents. Given a trajectory sequence, the LSTM networks are firstly utilized to extract the features for all agents, based on which the attention mask and social map are formed. Then, the attention mask and social map are fused to get the fusion feature map, which is processed by the social convolution to obtain a fusion feature representation. Finally, this fusion feature is taken as the input of a variable-length LSTM to predict the trajectory of the target agent. We note that the variable-length LSTM enables our model to handle the case that the number of agents in the sensing scope is highly dynamic in traffic scenes. To verify the effectiveness of our method, we widely compare with several methods on a public dataset, achieving a 20% error decrease. In addition, the model satisfies the real-time requirement with the 32 fps.