论文标题

深度学习异常检测:评论

Deep Learning for Anomaly Detection: A Review

论文作者

Pang, Guansong, Shen, Chunhua, Cao, Longbing, Hengel, Anton van den

论文摘要

数十年来,异常检测(又称异常检测或新颖性检测)一直是各个研究社区的持久而活跃的研究领域。仍然存在一些需要高级方法的独特问题复杂性和挑战。近年来,深度学习可以使异常检测(即深度异常检测)成为关键方向。本文通过全面的分类法调查了深度异常检测的研究,其中涵盖了三个高级类别的进步和11种细粒类别的方法。我们回顾他们的关键直觉,目标功能,基本的假设,优势和缺点,并讨论它们如何应对上述挑战。我们进一步讨论了一系列可能的未来机会和有关应对挑战的新观点。

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection, has emerged as a critical direction. This paper surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in three high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages and disadvantages, and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源