论文标题

几乎$ \ mathrm {g} _2 $歧管的变形理论

Deformation theory of nearly $\mathrm{G}_2$ manifolds

论文作者

Dwivedi, Shubham, Singhal, Ragini

论文摘要

我们研究了几乎$ \ mathrm {g} _2 $歧管的变形理论。这是承认真正的杀戮旋转器的七个维歧管。我们表明,几乎$ \ mathrm {g} _2 $结构的无限变形总体上被阻塞。明确地,我们证明了均质的几乎$ \ mathrm {g} _2 $结构的无限变形 - 瓦拉奇空间都被阻塞到二阶。我们还完全描述了几乎$ \ mathrm {g} _2 $歧管的共同体。

We study the deformation theory of nearly $\mathrm{G}_2$ manifolds. These are seven dimensional manifolds admitting real Killing spinors. We show that the infinitesimal deformations of nearly $\mathrm{G}_2$ structures are obstructed in general. Explicitly, we prove that the infinitesimal deformations of the homogeneous nearly $\mathrm{G}_2$ structure on the Aloff--Wallach space are all obstructed to second order. We also completely describe the cohomology of nearly $\mathrm{G}_2$ manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源