论文标题

基于深神经网络的自动化图像水印方案

An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks

论文作者

Zhong, Xin, Huang, Pei-Chi, Mastorakis, Spyridon, Shih, Frank Y.

论文摘要

数字图像水印是嵌入和提取覆盖图像上的水印的过程。为了动态适应图像水印算法,基于深度学习的图像水印方案在近年来引起了人们的关注。但是,现有的基于深度学习的水印方法既没有完全应用拟合能力来学习和自动化嵌入和提取算法,也不能同时实现鲁棒性和失明的特性。在本文中,提出了基于深度学习神经网络的强大图像水印方案。为了最大程度地减少域知识的需求,利用深神经网络的拟合能力来学习和推广自动图像水印算法。深度学习架构是专门为图像水印任务而设计的,该任务将以无监督的方式进行培训,以避免人类干预和注释。为了促进灵活的应用,实现了拟议方案的鲁棒性,而无需进行任何可能的攻击示例。从手机摄像头捕获图像中提取水印的挑战性案例表明了该提案的鲁棒性和实用性。实验,评估和申请案例证实了拟议方案的优势。

Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源