论文标题
关于重复和不重复的FRB源的真正部分
On the true fractions of repeating and non-repeating FRB sources
论文作者
论文摘要
从观察上讲,快速无线电爆发(FRB)可以分为重复且显然是不重复的(一次性)。目前尚不清楚所有FRB是否重复以及是否有真正的非重复FRB。我们尝试使用蒙特卡洛模拟来解决这些问题。我们定义了一个参数$ t_c $,其中累积的非重复源数量与重复源的总数相当,这是表示FRB中固有的中继器分数的一个很好的代理。假设存在两种类型的来源,并且它们的爆发能遵循幂定律分布,我们研究了{\ em观察到的}中继器馏分如何随时间发展而在不同的参数中演变。如果中继器的寿命足够长,以便可以在观察时间范围内忽略进化效果,除非$ t_c \ rightarrow \ rightarrow \ infty $(即没有真正的非重新重复的FRB来源),观察到的中继器馏分应随着时间而下降,然后达到峰值,然后降低。高峰时间$ t_p $和峰分数$ f _ {\ rm r,obs,p} $取决于$ t_c $和其他重复率参数。有了当前数据,我们为合理的参数值提出了下限$ T_C> 0.1 $ D。我们预测,未来通过铃声或类似宽场射电望远镜对FRB进行的未来连续监视将获得$ f _ {\ rm r,obs} $小于$ 0.04 $。检测较小的峰值$ f _ {\ rm r,obs,p} <0.04 $在不久的将来会不利于“所有FRB源重复”的ANSATZ。
Observationally, fast radio bursts (FRBs) can be divided into repeating and apparently non-repeating (one-off) ones. It is unclear whether all FRBs repeat and whether there are genuine non-repeating FRBs. We attempt to address these questions using Monte Carlo simulations. We define a parameter $T_c$ at which the accumulated number of non-repeating sources becomes comparable to the total number of the repeating sources, which is a good proxy to denote the intrinsic repeater fraction among FRBs. Assuming that both types of sources exist and that their burst energies follow power law distributions, we investigate how the {\em observed} repeater fraction evolves with time for different parameters. If the lifetime of repeaters is sufficiently long so that the evolutionary effect can be neglected within the observational time span, unless $T_c \rightarrow \infty$ (i.e. there is no genuine non-repeating FRB source) the observed repeater fraction should increase with time first, reach a peak, and then decline. The peak time $T_p$ and the peak fraction $F_{\rm r,obs,p}$ depend on $T_c$ and other repeating rate parameters. With the current data, we pose a lower limit $T_c > 0.1$ d for reasonable parameter values. We predict that future continuous monitoring of FRBs with CHIME or similar wide-field radio telescopes would obtain an $F_{\rm r,obs}$ less than $0.04$. The detection of a smaller peak value $F_{\rm r,obs,p}<0.04$ in the near future would disfavor the ansatz that "all FRB sources repeat".