论文标题
截短的布尔产品分布的有效参数估计
Efficient Parameter Estimation of Truncated Boolean Product Distributions
论文作者
论文摘要
我们研究在$ d $ dimensions中估算布尔产品分布的参数的问题,当样本被设置$ s \ subset \ {0,1 \}^d $通过会员甲骨文访问时。这是在离散设置中首次考虑从截短样本学习的计算和统计复杂性。 我们介绍了截断集$ s $的天然脂肪概念,根据该截断的样本,揭示了有关真实分布的足够信息。我们表明,如果截断集足够脂肪,则可以从截短的样品中生成来自真实分布的样品。令人惊叹的结果是,几乎可以有效地对布尔产品分布进行有效执行的任何统计任务(例如,在总变化距离,参数估计,均匀性或身份测试中学习)也可以从截短的样本中执行,样品的增加较小。我们将我们的方法推广到对$ d $替代方案的排名,在这里我们表明脂肪意味着对截短样品的木棍模型的有效参数估计。 探索从截短的样本中学习离散模型的限制,我们确定了三种自然条件,这是有效识别性所必需的:(i)截断集$ s $应该足够丰富; (ii)应通过会员查询访问$ s $; (iii)$ s $的截断应在各个方向上留出足够的随机性。通过仔细适应(Daskalakis等人,FOCS 2018)的随机梯度下降方法,我们表明这些条件也足以有效地学习截短的布尔产品分布。
We study the problem of estimating the parameters of a Boolean product distribution in $d$ dimensions, when the samples are truncated by a set $S \subset \{0, 1\}^d$ accessible through a membership oracle. This is the first time that the computational and statistical complexity of learning from truncated samples is considered in a discrete setting. We introduce a natural notion of fatness of the truncation set $S$, under which truncated samples reveal enough information about the true distribution. We show that if the truncation set is sufficiently fat, samples from the true distribution can be generated from truncated samples. A stunning consequence is that virtually any statistical task (e.g., learning in total variation distance, parameter estimation, uniformity or identity testing) that can be performed efficiently for Boolean product distributions, can also be performed from truncated samples, with a small increase in sample complexity. We generalize our approach to ranking distributions over $d$ alternatives, where we show how fatness implies efficient parameter estimation of Mallows models from truncated samples. Exploring the limits of learning discrete models from truncated samples, we identify three natural conditions that are necessary for efficient identifiability: (i) the truncation set $S$ should be rich enough; (ii) $S$ should be accessible through membership queries; and (iii) the truncation by $S$ should leave enough randomness in all directions. By carefully adapting the Stochastic Gradient Descent approach of (Daskalakis et al., FOCS 2018), we show that these conditions are also sufficient for efficient learning of truncated Boolean product distributions.