论文标题
基于蒙特卡洛抽样的BüchiAutomata证明了BüchiAutomata不包含
Proving Non-Inclusion of Büchi Automata based on Monte Carlo Sampling
论文作者
论文摘要
搜索正确性证明和对反例(错误)的搜索是验证的互补方面。为了最大程度地利用验证工具的实际使用,最好同时追求它们。尽管这在程序的终止分析中得到了很好的理解,但对于BüchiAutomata的语言包容分析并非如此,在该语言包含分析中,研究主要集中于改善证明语言包容性的算法,而是寻找对昂贵互补操作的反例。 在本文中,我们提出$ \ Mathsf {imc}^2 $,是一种用于证明Büchi自动机non-Inclusion $ \ Mathcal {l}(\ Mathcal {a})\ not \ not \ subseteeq \ subseteq \ Mathcal {l}(l Mathcal {l}(\ Mathcal {b Mathcal {b Mathcal {b})$的特定算法$ \ mathsf {Mc}^2 $为蒙特卡洛模型开发了针对LTL公式的检查。我们提出的算法采集$ m = \ lceil \lnΔ/ \ ln(1-ε)\ rceil $从$ \ MATHCAL {a} $中的随机拉索形样品,以决定是否拒绝假设$ \ Mathcal {l}(l}(l}) \ Mathcal {l}(\ Mathcal {B})$,对于给定的错误概率$ε$和置信度级别$ 1-δ$。有了这样的样本,$ \ mathsf {imc}^2 $可确保见证$ \ nathcal {l}(\ nathcal {a})\ not \ subseteq \ subseteq \ mathcal {l}(\ mathcal {b} $ bactimitiation lib $ $ probition libection Is counter labe,大于$ε$。广泛的实验评估表明,$ \ mathsf {imc}^2 $是找到BüchiAutomata纳入的快速可靠的方法。
The search for a proof of correctness and the search for counterexamples (bugs) are complementary aspects of verification. In order to maximize the practical use of verification tools it is better to pursue them at the same time. While this is well-understood in the termination analysis of programs, this is not the case for the language inclusion analysis of Büchi automata, where research mainly focused on improving algorithms for proving language inclusion, with the search for counterexamples left to the expensive complementation operation. In this paper, we present $\mathsf{IMC}^2$, a specific algorithm for proving Büchi automata non-inclusion $\mathcal{L}(\mathcal{A}) \not\subseteq \mathcal{L}(\mathcal{B})$, based on Grosu and Smolka's algorithm $\mathsf{MC}^2$ developed for Monte Carlo model checking against LTL formulas. The algorithm we propose takes $M = \lceil \ln δ/ \ln (1-ε) \rceil$ random lasso-shaped samples from $\mathcal{A}$ to decide whether to reject the hypothesis $\mathcal{L}(\mathcal{A}) \not\subseteq \mathcal{L}(\mathcal{B})$, for given error probability $ε$ and confidence level $1 - δ$. With such a number of samples, $\mathsf{IMC}^2$ ensures that the probability of witnessing $\mathcal{L}(\mathcal{A}) \not\subseteq \mathcal{L}(\mathcal{B})$ via further sampling is less than $δ$, under the assumption that the probability of finding a lasso counterexample is larger than $ε$. Extensive experimental evaluation shows that $\mathsf{IMC}^2$ is a fast and reliable way to find counterexamples to Büchi automata inclusion.