论文标题

通过开放式识别深入积极学习

Deep Active Learning via Open Set Recognition

论文作者

Mandivarapu, Jaya Krishna, Camp, Blake, Estrada, Rolando

论文摘要

在许多应用中,数据易于获取,但昂贵且耗时的标签示例包括医学成像和NLP。近年来,随着我们收集数据的能力的提高,这种差异才出现。在这些限制下,仅从未标记的池中选择最有用的实例并要求Oracle(例如,人类专家)为这些样品提供标签是有意义的。积极学习的目的是推论未标记样本的信息,以最大程度地减少对甲骨文的请求的数量。在这里,我们将积极的学习作为开放式识别问题。在此范式中,只有一些输入属于已知类别。分类器必须将其余的识别为未知。更具体地说,我们利用仅对训练数据非常类似的输入而产生高信心(即低透镜)预测的差异神经网络(VNN)。我们使用此置信度度量的倒数来选择Oracle应该标记的样品。 VNN不确定的直观,未标记的样本对于将来的培训提供了更多信息。我们对主动学习的新型概率表述进行了广泛的评估,对MNIST,CIFAR-10和CIFAR-100取得了最新的结果。此外,与当前的主动学习方法不同,我们的算法可以学习任务而无需任务标签。正如我们的实验显示的那样,当未标记的池由来自多个数据集的样品的混合物组成时,我们的方法可以自动区分样本与可见的和看不见的任务。

In many applications, data is easy to acquire but expensive and time-consuming to label prominent examples include medical imaging and NLP. This disparity has only grown in recent years as our ability to collect data improves. Under these constraints, it makes sense to select only the most informative instances from the unlabeled pool and request an oracle (e.g., a human expert) to provide labels for those samples. The goal of active learning is to infer the informativeness of unlabeled samples so as to minimize the number of requests to the oracle. Here, we formulate active learning as an open-set recognition problem. In this paradigm, only some of the inputs belong to known classes; the classifier must identify the rest as unknown. More specifically, we leverage variational neural networks (VNNs), which produce high-confidence (i.e., low-entropy) predictions only for inputs that closely resemble the training data. We use the inverse of this confidence measure to select the samples that the oracle should label. Intuitively, unlabeled samples that the VNN is uncertain about are more informative for future training. We carried out an extensive evaluation of our novel, probabilistic formulation of active learning, achieving state-of-the-art results on MNIST, CIFAR-10, and CIFAR-100. Additionally, unlike current active learning methods, our algorithm can learn tasks without the need for task labels. As our experiments show, when the unlabeled pool consists of a mixture of samples from multiple datasets, our approach can automatically distinguish between samples from seen vs. unseen tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源