论文标题

Cardiolearn:从心电图检测心脏病检测的云深学习服务

CardioLearn: A Cloud Deep Learning Service for Cardiac Disease Detection from Electrocardiogram

论文作者

Hong, Shenda, Fu, Zhaoji, Zhou, Rongbo, Yu, Jie, Li, Yongkui, Wang, Kai, Cheng, Guanlin

论文摘要

心电图(ECG)是监测人们心脏病的最方便和非侵入性工具之一,可用于诊断多种心脏病,包括心律不齐,急性冠状动脉综合征等。但是,由于提取特征能力的局限性,传统的心电图疾病检测模型显示出很大的误诊率。最近的深度学习方法已显示出很大的优势,但它们没有为没有培训数据或计算资源的人提供公开服务。 在本文中,我们展示了我们在建造,培训和服务此类开箱即用的云深学习服务方面的工作,可从ECG中识别Cardiolearn。任何其他ECG记录设备的分析能力都可以通过连接到Internet并调用我们的开放API来增强。实际上,我们还设计了一种便携式智能硬件设备以及交互式移动程序,该程序可以随时随地收集ECG并检测潜在的心脏病。

Electrocardiogram (ECG) is one of the most convenient and non-invasive tools for monitoring peoples' heart condition, which can use for diagnosing a wide range of heart diseases, including Cardiac Arrhythmia, Acute Coronary Syndrome, et al. However, traditional ECG disease detection models show substantial rates of misdiagnosis due to the limitations of the abilities of extracted features. Recent deep learning methods have shown significant advantages, but they do not provide publicly available services for those who have no training data or computational resources. In this paper, we demonstrate our work on building, training, and serving such out-of-the-box cloud deep learning service for cardiac disease detection from ECG named CardioLearn. The analytic ability of any other ECG recording devices can be enhanced by connecting to the Internet and invoke our open API. As a practical example, we also design a portable smart hardware device along with an interactive mobile program, which can collect ECG and detect potential cardiac diseases anytime and anywhere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源