论文标题
纳米腔内的纠缠fermion-photon-phonon状态的产生和动态
Generation and dynamics of entangled fermion-photon-phonon states in nanocavities
论文作者
论文摘要
我们开发了描述的分析理论,该理论描述了纳米腔内量化的电磁场的费米量量子发射极的形成和演变,并量化了纳米磁场和量化的声子或机械振动模式。该理论适用于广泛的腔量子光学机械问题,以及对与单分子和其他量子发射器耦合的等离激纳米腔的新兴研究。三态纠缠的最佳条件是在耦合系统中的参数共振附近实现的。该模型包括由于费米昂,光子和声子子系统的耦合而引起的,在随机演化方法中,其耗散储层是由Heisenberg-Langevin形式主义得出的。我们的理论提供了量子状态和可观察到的时间演变以及发射光谱的分析表达式。分析了经典声泵的限制以及参数和标准的一光子共振之间的相互作用。
We develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled to a quantized electromagnetic field in a nanocavity and quantized phonon or mechanical vibrational modes. The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters. The optimal conditions for a tri-state entanglement are realized near the parametric resonances in a coupled system. The model includes decoherence effects due to coupling of the fermion, photon, and phonon subsystems to their dissipative reservoirs within the stochastic evolution approach, which is derived from the Heisenberg-Langevin formalism. Our theory provides analytic expressions for the time evolution of the quantum state and observables, and the emission spectra. The limit of a classical acoustic pumping and the interplay between parametric and standard one-photon resonances are analyzed.