论文标题
多传感器次数最佳计划作为矩阵限制的superodular最大化
Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization
论文作者
论文摘要
3D场景模型可用于机器人技术,用于诸如路径计划,对象操纵和结构检查之类的任务。我们考虑使用由多个机器人团队捕获的深度图像创建3D模型的问题。每个机器人选择一个视点并从中捕获深度图像,并融合图像以更新场景模型。重复该过程,直到获得所需质量的场景模型为止。次数视图计划使用当前场景模型选择下一个观点。目的是选择观点,以便使用它们捕获的图像最能改善场景模型的质量。在本文中,我们解决了多个深度摄像机的次要视图计划。我们提出了一个效用函数,该功能可以分数观点集,并避免在多个传感器之间重叠。我们表明,具有此实用程序功能的多传感器次数观看次数计划是在矩阵约束下的supsodular最大化的实例。这允许通过多项式贪婪算法解决计划问题,该算法从最佳范围内产生恒定因子内的溶液。我们在使用多达8个传感器的模拟实验中评估了计划算法的性能,并使用配备了深度摄像头的两个机器人臂进行了现实世界中的实验。
3D scene models are useful in robotics for tasks such as path planning, object manipulation, and structural inspection. We consider the problem of creating a 3D model using depth images captured by a team of multiple robots. Each robot selects a viewpoint and captures a depth image from it, and the images are fused to update the scene model. The process is repeated until a scene model of desired quality is obtained. Next-best-view planning uses the current scene model to select the next viewpoints. The objective is to select viewpoints so that the images captured using them improve the quality of the scene model the most. In this paper, we address next-best-view planning for multiple depth cameras. We propose a utility function that scores sets of viewpoints and avoids overlap between multiple sensors. We show that multi-sensor next-best-view planning with this utility function is an instance of submodular maximization under a matroid constraint. This allows the planning problem to be solved by a polynomial-time greedy algorithm that yields a solution within a constant factor from the optimal. We evaluate the performance of our planning algorithm in simulated experiments with up to 8 sensors, and in real-world experiments using two robot arms equipped with depth cameras.