论文标题

spinfoam中的近代订单校正的数值计算 - $ j $渐近器

Numerical computations of next-to-leading order corrections in spinfoam large-$j$ asymptotics

论文作者

Han, Muxin, Huang, Zichang, Liu, Hongguang, Qu, Dongxue

论文摘要

我们从数字上研究了Lorentzian Engle-Pereira-Rovelli-Livine(EPRL)4-simplex幅度的次要订单校正。我们在Lorentzian EPRL 4-simplex振幅中进行了大量的扩展,具有两种不同类型的边界状态,即连贯的交织器和相干的自旋网络,并在数值上计算了这些扩增器的贡献。我们还研究了这些$ O(1/j)$校正对Barbero-Immirzi参数$γ$的依赖性。我们表明,它们作为$γ$的功能,可以稳定为有限的真实常数为$γ\至\ infty $。最后,由于$ O(1/j)$对SpinFoAM振幅的贡献,我们获得了Regge Action的量子校正。

We numerically study the next-to-leading order corrections of the Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) 4-simplex amplitude in the large-$j$ expansions. We perform large-$j$ expansions of Lorentzian EPRL 4-simplex amplitudes with two different types of boundary states, the coherent intertwiners and the coherent spin-network, and numerically compute the leading-order and the next-to-leading order $O(1/j)$ contributions of these amplitudes. We also study the dependences of these $O(1/j)$ corrections on the Barbero-Immirzi parameter $γ$. We show that they, as functions of $γ$, stabilize to finite real constants as $γ\to\infty$. Lastly, we obtain the quantum corrections to the Regge action because of the $O(1/j)$ contribution to the spinfoam amplitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源