论文标题
整合来自功能连接数据的多维临床特征的神经网络和词典学习
Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data
论文作者
论文摘要
我们提出了一个统一的优化框架,将神经网络与字典学习结合在一起,以模拟静止状态功能MRI和行为数据之间的复杂相互作用。字典学习目标将患者相关矩阵分解为共享基础网络和特定于主题的负载的集合。这些特定于主题的特征同时输入到一个预测多维临床信息的神经网络中。我们的新型优化框架将来自神经网络的梯度信息与常规矩阵分解目标相结合。该程序共同估计了最有用的临床严重性信息,估计了基础网络,受试者负载和神经网络权重。我们使用52名被诊断患有自闭症谱系障碍(ASD)的患者(ASD)对多得分预测任务进行了合并模型。我们的综合框架在十倍的交叉验证设置中优于最先进的方法,以预测三种不同的临床严重程度。
We propose a unified optimization framework that combines neural networks with dictionary learning to model complex interactions between resting state functional MRI and behavioral data. The dictionary learning objective decomposes patient correlation matrices into a collection of shared basis networks and subject-specific loadings. These subject-specific features are simultaneously input into a neural network that predicts multidimensional clinical information. Our novel optimization framework combines the gradient information from the neural network with that of a conventional matrix factorization objective. This procedure collectively estimates the basis networks, subject loadings, and neural network weights most informative of clinical severity. We evaluate our combined model on a multi-score prediction task using 52 patients diagnosed with Autism Spectrum Disorder (ASD). Our integrated framework outperforms state-of-the-art methods in a ten-fold cross validated setting to predict three different measures of clinical severity.