论文标题
整个分子星际培养基无处不在的速度波动
Ubiquitous velocity fluctuations throughout the molecular interstellar medium
论文作者
论文摘要
星际介质(ISM)的密度结构确定恒星形成并释放能量,动量和重元素,从而驱动星系进化。密度变化是通过气体运动来播种并放大的,但是这种运动的确切性质在空间尺度和银河系环境中尚不清楚。尽管密集的恒星气体可能来自不稳定性,收敛流和湍流的组合,但确定确切的起源是具有挑战性的,因为它需要在空间尺度的许多数量级上量化气体运动。在这里,我们在银河系和附近的Galaxy NGC 4321中测量分子气的运动,组装了跨越前所未有的空间动态范围的观测值($ 10^{ - 1} { - } { - } 10^3 $ PC)。我们检测到所有空间尺度和银河环境中无处不在的速度波动。这些波动的统计分析表明如何组装恒星的气体。我们发现波长为$ 0.3 { - } 400 $ PC的振荡气流。这些流与可能通过重力不稳定性形成的规则间隔密度增强耦合。我们还确定了随机和无尺度的速度和密度波动,这与湍流中产生的结构一致。我们的结果表明,ISM结构不能孤立地考虑。取而代之的是,其形成和进化由嵌套物质的嵌套相互依赖流量控制,涵盖了许多数量级的空间尺度。
The density structure of the interstellar medium (ISM) determines where stars form and release energy, momentum, and heavy elements, driving galaxy evolution. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scale and galactic environment. Although dense star-forming gas likely emerges from a combination of instabilities, convergent flows, and turbulence, establishing the precise origin is challenging because it requires quantifying gas motion over many orders of magnitude in spatial scale. Here we measure the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span an unprecedented spatial dynamic range ($10^{-1}{-}10^3$ pc). We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from $0.3{-}400$ pc. These flows are coupled to regularly-spaced density enhancements that likely form via gravitational instabilities. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows. Our results demonstrate that ISM structure cannot be considered in isolation. Instead, its formation and evolution is controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.