论文标题
删除图的协作过滤
Disentangled Graph Collaborative Filtering
论文作者
论文摘要
从交互数据中学习用户和项目的信息表示,对于协作过滤(CF)至关重要。当前的嵌入功能利用用户项目关系来丰富表示形式,从单个用户项目实例演变为整体交互图。然而,它们在很大程度上以统一的方式对关系进行建模,同时忽略了用户对采用这些物品的意图的多样性,这可能是要花费时间,兴趣或为像家庭这样的其他人购物。建模用户兴趣的这种统一方法很容易导致次优表示,未能模拟各种关系并在表示中解散用户意图。 在这项工作中,我们特别关注用户意图粒度的用户项目关系。因此,我们设计了一个新的模型,即删除图形协作过滤(DGCF),以解开这些因素并产生分离的表示。具体而言,通过对每个用户项目交互的意图进行建模,我们迭代地完善了意图感知的交互图和表示形式。同时,我们鼓励独立不同的意图。这导致了分离的表示形式,有效地提取了与每个意图有关的信息。我们在三个基准数据集上进行了广泛的实验,并且DGCF比NGCF,DeseNGCN和Macridvae等多种最先进的模型取得了重大改进。进一步的分析提供了有关DGCF对用户意图和表示形式的解释性的优势的见解。我们的代码可在https://github.com/xiangwang1223/disentangled_graph_graph_collaborative_filtering中找到。
Learning informative representations of users and items from the interaction data is of crucial importance to collaborative filtering (CF). Present embedding functions exploit user-item relationships to enrich the representations, evolving from a single user-item instance to the holistic interaction graph. Nevertheless, they largely model the relationships in a uniform manner, while neglecting the diversity of user intents on adopting the items, which could be to pass time, for interest, or shopping for others like families. Such uniform approach to model user interests easily results in suboptimal representations, failing to model diverse relationships and disentangle user intents in representations. In this work, we pay special attention to user-item relationships at the finer granularity of user intents. We hence devise a new model, Disentangled Graph Collaborative Filtering (DGCF), to disentangle these factors and yield disentangled representations. Specifically, by modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations. Meanwhile, we encourage independence of different intents. This leads to disentangled representations, effectively distilling information pertinent to each intent. We conduct extensive experiments on three benchmark datasets, and DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE. Further analyses offer insights into the advantages of DGCF on the disentanglement of user intents and interpretability of representations. Our codes are available in https://github.com/xiangwang1223/disentangled_graph_collaborative_filtering.